
Workshop On Virtual Reality Interaction and Physical Simulation (2005)
F. Ganovelli and C. Mendoza (Editors)

An Interruptible Algorithm for Collision Detection between
Deformable Objects

César Mendoza Carol O’Sullivan

Grupo Modelado y Realidad Virtual Computer Science Department
Universidad Rey Juan Carlos, Spain Trinity College Dublin

cesar.mendoza@urjc.es Carol.OSullivan@cs.tcd.ie

Abstract

This paper presents an approach to performing time-critical collision detection for deformable objects. The de-
formable objects are represented by dense meshes and their deformations are steered by a coarser mesh (reduced
model) based on explicit finite elements. To achieve an interruptible algorithm, we use a sphere tree constructed
using an adaptive medial-axis approximation of the dense mesh. The bounding spheres are updated using the
coarse mesh, thus balancing computational accuracy and speed.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computational Geometry and Object Model-
ing]: Physically based modeling

1. Introduction

Physically based modeling of deformable objects and col-
lision detection have been extensively researched. Different
approaches have been proposed to reproduce physically cor-
rect behaviors of deformable objects in real-time. Mostly,
they are based on simplifications of more complex represen-
tations or on the use of fast and stable integration techniques
on their governing equations. More recently, different levels
of resolution of the physical model, reduced models, have
been used to speed up the simulation.

In collision detection, most effort has been focused on
solving the collision detection problem for rigid bodies.
Most of the proposed techniques tackle the problem in two
phases. The first phase, a broad phase, culls out pairs of ob-
jects that cannot possibly be interacting. The second phase,
a narrow phase, carries out more detailed intersection calcu-
lations. To accelerate the collision queries, this narrow phase
most often uses pre-computed data structures that are hier-
archical representations of the objects. To ensure real-times
rates throughout the simulation, it is desirable to use a time-
critical system which can interrupt the collision detection
process to fit a time budget. Unfortunately, these techniques
cannot be applied directly in cases where the objects are de-
formable, since the data structures need to be updated after

every deformation. The update process is normally slow and
constitutes a major bottleneck for real-time computations.
Real-time collision detection for deformable objects is there-
fore a growing research area.

1.1. Contributions and outline

We present an approach to performing time-critical collision
detection for deformable objects. To our knowledge, all pre-
vious collision detection algorithms that used an interrupt-
ible, or just in time, system were focused on rigid bodies and
none of them on deformable objects. Our approach is based
on [JP04] since we also use a reduced model to update the
hierarchy tree. However they do not consider a fully inter-
ruptible system and some artifacts arise due to the use of a
simple bounding volume generator.

The main idea behind our approach is to trade accuracy
for speed in order to guarantee that collision processing is
always performed in less than or equal to a stipulated criti-
cal time. First we create a deformable model based on two
different resolution representations: The first resolution is a
dense triangular mesh that we use for graphical rendering
and the second is a coarser mesh (reduced model) used for
deformations. The coarser mesh uses inner tetrahedrons so

c© The Eurographics Association 2005.

C. Mendoza & C. O’Sullivan / An Interruptible Algorithm for Collision Detection between Deformable Objects

explicit finite elements can be used. The dense mesh follows
the deformations of the coarse mesh by using rigid links.
Next, we produce multiple approximations of the object’s
real surface using a sphere hierarchy. Our collision detection
algorithm checks for intersections between such hierarchies
until it exceeds the given critical time. The sphere hierar-
chies are not updated using the vertices of the surface of the
object, but rather the vertices of the reduced model, thus re-
ducing the time to update the hierarchies.

The rest of the paper is organized as follows. Section 2
gives an overview of some related works in deformable ob-
jects and collision detection. Then, in Section 3, we describe
how we simulate deformations by using two different reso-
lution meshes. In Section 4 we present our approach to han-
dling collision detection between deformable objects using
an interruptible mechanism, followed by experiments and re-
sults in Section 5. Finally, some conclusions and future plans
are discussed in Section 6.

2. Related work

In general, there are two types of deformable objects in com-
puter graphics: geometrically-based and physically- based.
Geometrically-based deformable objects change their shape
by moving some control points or by calculating implicit
functions (e.g. Free Form Deformation models [FdPT97]).
Physically based models use physical laws and material
properties to model the object. Among the best known
are the mass-spring dampers, [KAM00], boundary element
[JP99] and finite element [OH99, MDMJ02] methods. The
latter are the most accurate, but interactivity can be lost if the
objects have a large number of primitives. To handle this, we
can use multiresolution models (i.e., a set of reduced models)
to achieve real-time simulations. Debunne et al. [GDB01]
use space and time adaptive sampling to achieve dynamic
real-time deformations. Kondo and Kanai [KK04] simulated
dense meshes using an underlying reduced physical model.
A similar approach has been proposed in [CGC∗02].

A significant amount of research has been focused in rigid
body collision detection. Most of the resulting techniques
need to be modified for deformable objects (please refer to
[JTT01, TKH∗04] for recent surveys). The general process
is divided in a broad phase to cull out non interacting pairs
of bodies and in a narrow phase that traverses hierarchical
representations of the objects to find intersecting regions.
In general, these representations are made of bounding vol-
umes such as oriented bounding boxes (OBB) [GLM96],
k-dops [KHM∗98], including their special case, the 6-dop
axis-aligned bounding boxes (AABBs) [vdB97], and sphere
trees [Hub96, BO04]. For rigid body time-critical collision
detection, spheres have also been used to generate approx-
imate responses to contacts [DO00]. Time-critical collision
detection, also known as graceful degradation, was first pro-
posed by Hubbard [Hub95]. The objects are represented by
sphere trees and collisions are tested in round-robin order,

progressively increasing the level of accuracy until the in-
terruptible mechanism stops the process after a given time.
Later, this approach was extended to improve the mechanism
for collision scheduling, contact modelling and collision re-
sponse [DO00]. Klein and Zachmann [KZ03] proposed an
average case approach (ADB-trees) to abort the traversal of
the hierarchy in a time-critical framework. They consider the
probability that a pair of bounding volumes contains inter-
section volumes. To date, these approaches have only been
used for collision detection between rigid bodies.

In collision detection for deformable objects, the hierar-
chies must be updated at each timestep that the object de-
forms. This update process can be very slow and thus the
simulation may not meet real-time demands. Van den Bergen
compared AABBs and OBBs [vdB97] for deformable ob-
jects and determined that AABBs are the best option. He
also showed that, although the hierarchies can also be rebuilt,
updating is almost ten times faster than rebuilding. Lars-
son and Akenine-Möller [LAM01] compared different meth-
ods for the hierarchy updating process based on bottom-up
and top-down strategies. They found that these methods de-
pend on the number of deep nodes processed. Based on this,
they proposed an hybrid method that uses both strategies.
Mezger et al. [MKE03] speeded up the process by updat-
ing the hierarchy after a few time steps and then only those
branches whose primitives that have moved farther than a
given distance. Recently, an approach to update the hierar-
chies by means of a reduced model has been proposed by
James and Pai [JP04]. Alternatively, hardware accelerated
collision detection methods have shown promising results
[MLD∗02, GLM04]. However, accuracy is still limited due
to the non-floating point precision and the size of the frame
buffer memory. Other techniques based on spatial hashing
have shown good results [THM∗03].

3. Deformable Model Approach

In this section, we present our dynamic model for the sim-
ulation of object deformations. It is based on two meshes:
a dense mesh composed of a large number of triangles and
used for graphical rendering. The vertices of this mesh are
repositioned at each time-step to simulate complex defor-
mations. These new positions of the vertices are steered by
a coarser mesh, reduced model, see Figure 1. This reduced
model can be any physically based elastic model. In our case,
we have implemented an explicit finite element model as
proposed by O’Brien and Hodgins [OH99] and used a 4th
order Runge-Kutta integration scheme.

3.1. Linking the coarse and dense meshes

The procedure to link the dense and the coarse meshes is
done in an off-line process. Suppose that the dense mesh
has P=(p1, p2, ..., pN)T vertices on its surface. Next, con-
sider only the vertices on the surface of the coarse tetrahedral

c© The Eurographics Association 2005.

C. Mendoza & C. O’Sullivan / An Interruptible Algorithm for Collision Detection between Deformable Objects

Figure 1: Top left figure shows a dense mesh whose defor-
mations are steered by a coarser mesh, top right. Rigid links
are used to link both meshes, bottom.

mesh: Q=(q1,q2, ...,qM). These are the reduced coordinates
of the model. Note that M < N. Since the dense mesh ver-
tices are steered by the reduced coordinates, we can establish
that P= f (Q).

For each pi we find its three closest reduced coordinates
q0,q1,q2. The idea is to find a rigid link between the ver-
tex pi and a point O weighted by the three closest reduced
coordinates, see Figure 2. The rigid link will never vary its
length but its origin, O, and its orientation change. The ori-
entation changes with respect to the reduced coordinates, qi,
(i = 0,1,2). These changes are executed following precom-
puted weights in the undeformed reference axis. To compute

p

q0

q1

q2

Dense triangular
mesh

Coarse tetrahedral
 mesh

d1

d0

d2
O

Rigid
Link

Figure 2: The length of the rigid link remains constant but
its orientation and origin changes to adapt to the new shape
of the deformable object.

the origin of the rigid link, O, we use:

O = q0α0 +q1α1 +q2α2 (1)

where αi represents the weight of each of the three reduced
coordinates. These weights are obtained using the distances,
in the undeformed configuration, between the reduced coor-
dinates and its given vertex in the dense mesh, see Figure 2.
Let the distances be given by

di = ‖qi − p‖2 i = 0,1,2. (2)

Therefore the weights can be computed as follows:

α0 = d1+d2
∑i di

; α1 = d0+d2
∑i di

; α2 = d1+d0
∑i di

. (3)

These weights are constant and they are not recomputed
during the simulation. When the vertices of the tetrahedral
coarse mesh change their position (i.e. when a deformation
occurs) only the new origin of the rigid link needs to be
recomputed following Equation 1.

To keep the magnitude of the rigid link constant with re-
spect to the three reduced coordinates, we continue as fol-
lows: let n be the normal of the plane spanned by the reduced
coordinates, i.e.

n = (q1 −q0)× (q2 −q0) (4)

and set

a = (q1 −q0)×n, (5)

see Figure 3. Define a fixed and undeformed basis consti-

q2

Dense triangular
mesh Rigid Link

q1

q0

n

a=(q1-q0) x n

Figure 3: The rigid link joins each vertex of the surface
dense mesh to the tetrahedral coarse mesh.

tuted by the vectors:

e0 = n; e1 = (q0 −q1); e2 = a. (6)

Let the magnitude of the projections of the rigid link onto
these axes be ‖Pri‖2, i = 0,1,2 (e.g. ‖Pr1‖2 is the projec-
tion of the rigid link onto the n axis). The sign, ξi, of these
projections is given by:

ξi =
ei ·Pri

‖ei‖2‖Pri‖2
; i = 0,1,2. (7)

Thus, we have that the rigid link is defined as:

Rl =
2

∑
i=0

ξiPri. (8)

c© The Eurographics Association 2005.

C. Mendoza & C. O’Sullivan / An Interruptible Algorithm for Collision Detection between Deformable Objects

3.2. Steering the dense mesh

When the vertices of the coarse mesh are repositioned,
meaning that there has been a deformation, we use the rigid
links to update the vertices of the dense mesh. Using the new
positions of the reduced coordinates, we recompute the ori-
gin of the rigid link Onew using Equation 1, where the values
of αi have been computed off-line. To update the orienta-
tion of the rigid links, we use the new reduced coordinates
to compute the new reference axis as we did for ei. Define
the normalized axis as ei

de f ormed . Hence, the rigid link in the
new basis is given by:

Rl(new) =
2

∑
i=0

ξi‖Pri‖2ei
de f ormed i = 0,1,2. (9)

Note that ξi and ‖Pri‖2 have been computed off-line. There-
fore, the new position of the vertex, p, is computed using
the new origin and the new orientation of the rigid link as
follows:

pnew = Onew +Rl(new) (10)

4. Collision handling

A time-critical collision detection mechanism “checks for
collisions between successivelly tighter aproximations of
the objects’ real surfaces” [Hub96]. We use hierarchies of
spheres, known as sphere-trees, as approximated representa-
tions of the objects. There are some advantages to using hier-
archies of spheres: it is easy and fast to test for intersections
between them; they are invariant to rotations and therefore
they can be efficiently updated; and most importantly, they
can easily be adapted to provide approximate contact mod-
elling and collision response in an interruptible algorithm
[DO00].

4.1. Sphere tree construction

There exist several methods to construct a sphere-tree
[Hub96, BO04]. The idea is to construct hierarchies of
spheres in which each level of the hierarchy represents a
tighter fit to the object. Guibas et al. [GNRZ02] classified
these hierarchies as being either layered or wrapped. In
a layered hierarchy the spheres always enclose their child
spheres, while in a wrapped hierarchy this is not necessar-
ily true since regions of the child spheres can be outside
of their enclosing parent sphere; Although less conserva-
tive, the wrapped hierarchy is always tighter than the layered
hierarchy. We construct, in an off-line process, a wrapped
hierarchy based on an adaptive medial axis approximation
[BO04]. The medial axis approximation of the object rep-
resents its skeleton and it is used to place the sphere hi-
erarchies on the surface of the object. The medial axis is
updated, i.e. adapted, during the sphere-tree construction to
ensure a higher degree of accuracy. Additionally, we use the
data structure proposed in [DO00] to achieve fast hierarchy
traversals and low memory storage.

4.2. Interruptible approach for collision handling

Traditional hierarchy traversal for collision detection is per-
formed using a depth-first search [TKH∗04][vdB97]. The
general algorithm can be summarized as depicted in Figure
4. In this search method the hierarchy trees are examined in

traverse (O, a)
if no overlap(0, a) then

return;
endif
if a and 0 are leaves then

return primitives tests for a and 0
else

for all children of a[i] and 0
traverse(a[i], 0)

endfor
endif

Figure 4: Pseudocode of traditional traversal algorithm.

vertical directions, going down to the leaves for each search.
See Figure 5. If the process is suddenly interrupted, many
branches, from the root to the leaf, may remain untested,
leading to missed collisions. For example, suppose that the
hierarchies of Figure 5 collides at the (4,e) and (12,m) leaf
sphere pairs. If the process is interrupted at the fourth path
search (i.e. (1, f)), the collision between the (12,m) leaf
sphere pair will have never been tested, and even worse,
the sphere pair parents tests ((0,d),(3,d)) will be missed as
well. Therefore, depth-first search is certainly not an option
for time-critical processing, unless the search is capped at a
given depth.

Instead of the traditional traversal, we propose to use
a breadth-first search to frame our algorithm. This search
technique traverses the hierarchy horizontally, progressing
successively through tighter approximations of the object.
Therefore, if the allocated budget time expires, at least the
algorithm would have tested collisions between approxima-
tions of the object without missing any branch. In Figure 6,
if the process is interrupted at the fourth path search, then
we would have tested all the branches although not reaching
the leaf sphere pairs. Hence, we use approximations of the
object surface to compute the collision responses. Figure 7
summarizes our proposed algorithm: There are several key
aspects in our traversal algorithm:

• It contains an entity called pair, where we store spheres
to be tested for overlapping. The order in which we store
the spheres in the entity changes during the traversal. This
allows us to traverse the hierarchy in a stepped and opti-
mized way. See Figure 6.

• It has two FIFO (First Input First Output) lists. PAIRLIST
stores the pairs of spheres to be tested for collision
and COLLISIONLIST stores the colliding pairs of leaf
spheres.

c© The Eurographics Association 2005.

C. Mendoza & C. O’Sullivan / An Interruptible Algorithm for Collision Detection between Deformable Objects

0

1 2 3

4 5 6 7 8 9 10 11 12

b c d

e f g h i j k l m

a

 T R A V E R S A L : Top down to the leaves

0a

0b

1b

1e

4e
Collision

1st
path

5e

6e

2
nd path

3rd path

No collision

No collision

1g

1f

4th path

Hierarchy 1 Hierarchy 2

No collision

No collision

5th path

Figure 5: Example of a traditional hierarchy traversal for collision detection

 T R A V E R S A L: Horizontal direction

0a

b0

1b
Collision

1st
path 2

nd path

3rd path

4th p
ath

5
th path

c0 d0

2b 3b

6th path

0 a
0b
0c
0d

1 b
2 b
3 b

pairList

d
d

1
2

1d

7th p
ath

8
th path

2d 3d

9th path

Switch
the storing
order

Figure 6: Example of a horizontal hierarchy traversal

• The algorithm checks at each sphere collision test that the
allocated time is not exhausted. If this is the case then the
process is interrupted.

Ideally, if the process is not interrupted, we use the spheres
in the pairs of COLLISIONLIST to compute the force re-
sponses. Note that we do not reach the primitives (e.g. facets)
on the surface. We are trading accuracy for speed. How-
ever, if the process is interrupted then we use PAIRLIST and
COLLISIONLIST to approximate the force responses. We
assume, therefore, that untested sphere pairs in PAIRLIST
are colliding.

4.3. Collision response

To compute the approximated contact force we used penalty
techniques based on the proportional penetration distance
between the colliding spheres as in [DO00]. Each sphere
contains information about the penetration with respect to
the corresponding colliding sphere and the direction of the
force repulsion vector. We compute the penetration for each
pair of spheres in COLLISIONLIST (and eventually in
PAIRLIST if the process is interrupted). The corresponding

repulsion vector for the spheres is given by the vectors be-
tween the center of the spheres i.e.

n =
O2 −O1

‖O2 −O1‖2
. (11)

The direction repulsion vector is given by −n and n. Ad-
ditionally, each sphere is related to a set of closest vertices
in the coarse mesh. The spheres considered to be colliding
apply their stored contact force to the closest coarse vertex,
as in a classical boundary condition of finite elemet meth-
ods. Each coarse vertex averages the received forces to cause
deformations. Finally, at the end of the simulation cycle,
the finer mesh follow the deformations of the coarse mesh
through the rigid links as described in Section 3.2.

4.4. Hierarchy update

Our hierarchy update is based on recent research by James
and Pai [JP04], in which updates are performed using a set
of coordinates of a reduced model instead of the vertices of
the rendered and dense mesh. There are however some key
factors that makes our update proposal different. They as-
sumed that each sphere contained at least a set of polygons

c© The Eurographics Association 2005.

C. Mendoza & C. O’Sullivan / An Interruptible Algorithm for Collision Detection between Deformable Objects

traverse (0, a)
Pair p;
p.1 = 0; // root object 1
p.2 = a; // root object 2
List pairList;
List collisionList;
pairList.add(p);

while (pairList.isNotEmpty() .AND. notTimeCritical())
p = pairList.getFirstElement();
pairList.RemoveFirstElement();
if (p.Overlaps())

if (p.2.isLeaf)
if (p.1.isLeaf)

collisionList.add(p);
else

Pair pB;
pB.1 = p.2;
pB.2 = p.1;
pairlList.add(pB);

endif
else

forall p.2.children;
Pair pB;
pB.1 = p.2.children[i];
pB.2 = p.1;
pairList.add(pB);

endfor
endif

endif
endwhile

Figure 7: Pseudocode of interruptible traversal algorithm.

with associated vertex points. This leads to large bounding
spheres for objects with long thin triangles. The sphere-tree
hierarchy generator that we use [BO04] avoids this situation
since spheres can be placed on the surface of the triangles en-
suring complete coverage and a higher degree of accuracy,
as shown in Figure 8. To update the position and radius of

Spheres
on the
surface
of the
triangles

Figure 8: Putting spheres on the surface of the triangles
avoids large bounding spheres.

the spheres we use the set of closest vertices in the coarse
mesh, Vi, obtained in a pre-processing stage. The new posi-
tion center is updated by adding the average displacemens
of the vertices in Vi to the original center. Results are better

for a larger number of vertices in Vi, however increasing this
number may lead to slower updates rates. The diameter of
the spheres is updated using an heuristic as follows: we take
the distance from the center of a given sphere to each of its
associated coarse vertices at the undeformed configuration.
At each deformation, these distances change; Let the maxi-
mum ratio between the new and the original distances be λ.
Hence, the new radius is given by rnew = λroriginal .

5. Results

In our tests we used a Pentium 4 CPU, 3.00 GHz with 1.00
GB RAM under a windows XP system. The graphics card is
a NVIDIA GeForce 6800 GT. The dense surface mesh was
simplified under a quadratic error metrics approach [GH97].
A tetrahedralization from the simplified surface mesh was
obtained using NetGen [Sch97].

To test our algorihtm we have simulated the interaction
of two virtual objects. They deform following the dynamic
model described section 3. We have run the simulation sev-
eral times and each one has had a different time budget al-
located to its collision detection module. Each simulation
starts with identical initial conditions (e.g. same physical pa-
rameters, same object positions). The collision process of
each simulation is interrupted at different instants. Figure
9 shows four simulations whose collision detection mech-
anisms are interrupted. Simulations in Figure 9.a,b,c use
spheres (colored in red) in the middle of the sphere-tree hier-
archy to compute contact responses, while simulation in Fig-
ure 9.d, having a larger budget of time for the collision pro-
cess, uses leaf spheres. Different types of interactions have

a) b)

c) d)

Figure 9: Red spheres are used to compute contact re-
sponses at different critical times: a) 0.0001 seg. b) 0.001
seg. c) 0.01 seg. d) 0.1 seg.

been tested and the corresponding results are summarized in
Table 1. Notice that for all the interactions when the criti-
cal time is small the COLLISIONLIST is empty, i.e. the colli-
sion process is interrupted before it can store any leaf sphere

c© The Eurographics Association 2005.

C. Mendoza & C. O’Sullivan / An Interruptible Algorithm for Collision Detection between Deformable Objects

Critical Dragon Dragon FPS Bunny Bunny PFS Bunny-Dragon Bunny-Dragon PFS
time pairList collisionList (Dragons) pairList collisionList (Bunnies) pairList collisionList (Bunny-Dragon)

0.0001 3 0 60 3 0 52 3 0 56

0.001 17 0 60 25 0 48 21 0 51

0.01 30 0 42 44 0 37 33 0 42

0.1 41 6 35 61 11 30 52 12 33

1 1345 30 25 1405 36 22 1387 28 23

Table 1: Results of interactions.

in the list. When we increase the critical time allowed, the
COLLISIONLIST starts storing elements which will provide a
more accurate response. However, the number of elements in
the PAIRLIST increases dramatically, meaning that the non-
tested collision spheres pairs increased. This supposes that
our approach is memory consuming. Moreover, the frames
per second (FPS) increase as we allocate less time to the col-
lision process. Hence, we can profit from this extra time and
use it in other processes, e.g. the time-step of the integration
scheme can be modified.

6. Conclusion

In this paper we introduce an approach to performing time-
critical collision detection for deformable objects. To our
knowledge, previous fully-interruptible collision detection
methods were focused on rigid bodies and none of them to
deformable bodies. Our approach is well suited for appli-
cations that do not require high precision but that need to
keep a constant frame rate. Moreover, instead of interrupt-
ing the collision detection process using critical times, the
same algorithm could be useful for accelerating collisions
using level-of-detail as a metric. Thus, we can interrupt, for
example, collisions occuring farther away and therefore high
levels of visual accuracy during the collisions would not be
needed (motivating the use of larger bounding spheres). We
have also improved BD-trees by using an adaptive medial
axis approximation and by using heuristics to associate ver-
tices of the reduced model to spheres that do not enclose any
vertex.

There are some limitations of this approach. Storing a
set of primitives (in our case, a set of vertices of the tetra-
hedral mesh) represents a high level of memory consump-
tion. Additionally, our interruptible mechanism is based on
a breadth-first search that keeps a list of possible pairs of
colliding spheres. For hierarchies whose levels have a large
number of nodes, the storage in the lists may be very high.
Future work includes the evaluation of the accuracy of our
approach for large deformations and force computation us-
ing reduced models.

References

[BO04] BRADSHAW G., O’SULLIVAN C.: Adaptive
medial-axis aproximation for sphere-tree con-
struction. ACM Transactions on Graphics 23, 1
(2004), 1–26.

[CGC∗02] CAPELL S., GREEN S., CURLESS B.,
DUCHAMP T., POPOVIC Z.: A multiresolution
framework for dynamic deformations. In
Proceedings ACM SIGGRAPH Symposium on
Computer Animation (2002).

[DO00] DINGLIANA J., O’SULLIVAN C.: Graceful
degradation of collision handling in physically
based animation. Computer Graphics Forum
19, 3 (Aug. 2000), 239–248.

[FdPT97] FALOUTSOS P., DE PANNE M. V., TER-
ZOPOULOS D.: Dynamic free-form deforma-
tions for animation synthesis. IEEE Transac-
tions on Visualization and Computer Graphics
3, 3 (1997), 201–214.

[GDB01] G. DEBUNNE M. DESBRUN M.-P. C., BARR

A.: Dynamic real-time deformations using
space and time adaptive sampling. In Proc.
ACM SIGGRAPH ’01 (2001), pp. 31–36.

[GH97] GARLAND M., HECKBERT P. S.: Surface sim-
plification using quadric error metrics. In SIG-
GRAPH ’97: Proceedings of the 24th annual
conference on Computer graphics and inter-
active techniques (1997), ACM Press/Addison-
Wesley Publishing Co., pp. 209–216.

[GLM96] GOTTSCHALK S., LIN M. C., MANOCHA D.:
Obbtree: a hierarchical structure for rapid in-
terference detection. In SIGGRAPH ’96: Pro-
ceedings of the 23rd annual conference on
Computer graphics and interactive techniques
(1996), ACM Press, pp. 171–180.

[GLM04] GOVINDARAJU N., LIN M., MANOCHA D.:

c© The Eurographics Association 2005.

C. Mendoza & C. O’Sullivan / An Interruptible Algorithm for Collision Detection between Deformable Objects

Fast and reliable collision culling using graph-
ics processors. In IEEE Transactions on Visual-
ization and Computer Graphics 2005 (Special
issue on best papers of ACM VRST’04) (2004).

[GNRZ02] GUIBAS L., NGUYEN A., RUSSEL D., ZHANG

L.: Collision detection for deforming neck-
laces. In 8th Annual Symposium on Computa-
tional Geometry (2002), ACM PRESS, pp. 33–
42.

[Hub95] HUBBARD P.: Collision detection for interac-
tive graphic applications. IEEE Transactions
on Visualization and Computer Graphics 1, 3
(1995), 218–230.

[Hub96] HUBBARD P.: Approximating polyhedra with
spheres for time-critical collision detection.
IEEE Transactions on Visualization and Com-
puter Graphics 15, 3 (1996), 179–210.

[JP99] JAMES D., PAI D.: Artdefo: Accurate real-time
deformable objects. In Proceedings of ACM
SIGGRAPH 1999 (Aug. 1999), pp. 65–72.

[JP04] JAMES D., PAI D.: BD-Tree: Output-sensitive
collision detection for reduced deformable
models. ACM Transactions on Graphics (SIG-
GRAPH 2004) 23, 3 (Aug. 2004).

[JTT01] JIMENEZ P., THOMAS F., TORRAS C.: 3d
collision detection: A survey. Computer and
Graphics 21, 3 (2001), 269–285.

[KAM00] KUHNAPFEL U., AKMAK H., MAASS H.: En-
doscopy surgery training using virtual reality
and deformable tissue simulation. Computer
and Graphics 24 (2000), 671–82.

[KHM∗98] KLOSOWSKI J. T., HELD M., MITCHELL J.
S. B., SOWIZRAL H., ZIKAN K.: Efficient col-
lision detection using bounding volume hierar-
chies of k-dops. IEEE Transactions on Visu-
alization and Computer Graphics 4, 1 (1998),
21–36.

[KK04] KONDO R., KANAI T.: An interactive
physically-based animation system for dense
meshes. In Proc. Short Presentations and
Interactive Demos, Eurographics ’04 (2004),
pp. 93–96.

[KZ03] KLEIN J., ZACHMANN G.: Adb-trees: Control-
ling the error of time-critical collision, detec-
tion. In 8th International Fall Workshop Vision,
Modeling, and Visualization (VMV) (University
München, Germany, Nov. 2003), pp. 19–21.

[LAM01] LARSSON T., AKENINE-MÖLLER T.: Col-
lision detection for continuously deforming
bodies. In Eurographics, short presentations
(2001), pp. 325–333.

[MDMJ02] M. M., DORSEY J., MCMILLAN L., JAGNOW

L.: Stable real-time deformations. In ACM
SIGGRAPH Symposium on Computer Anima-
tion (SCA ’02) (2002), pp. 49–54.

[MKE03] MEZGER J., KIMMERLE S., ETZMUSS O.: Hi-
erarchical techniques in collision detection for
cloth animation. Journal of WSCG 11, 2 (2003),
322–329.

[MLD∗02] MANOCHA D., LIN M., DOGGETT M.,
GREENE N., HOFF K., M.KILGARD: Inter-
active geometric computations using graphics
hardware. In SIGGRAPH 2002 Course Notes
(2002), ACM SIGGRAPH.

[OH99] O’BRIEN J., HODGINS J.: Graphical mod-
eling and animation of brittle fracture. In
Proceedings of ACM SIGGRAPH 1999 (Aug.
1999), ACM Press/Addison-Wesley Publishing
Co., pp. 137–146.

[Sch97] SCHOBERL J.: Netgen - an advancing front
2d/3d mesh generator based on abstract rules.
In Computations in Visualization and Science
(1997), pp. 41–52.

[THM∗03] TESCHNER M., HEIDELBERGER B.,
MUELLER M., POMERANETS D., GROSS

M.: Optimized spatial hashing for collision de-
tection of deformable objects. In Proceedings
of Vision, Modeling, Visualization VMV’03
(2003), pp. 47–54.

[TKH∗04] TESCHNER M., KIMMERLE S., HEIDEL-
BERGE B., ZACHMANN G., RAGHUPATHI

L., FUHRMANN A., CANI M.-P., FAURE F.,
MAGNENAT-THALMANN N., STRASSER W.,
VOLINO P.: Collision detection for deformable
objects. In Proc. State of the Art Reports, Eu-
rographics ’04 (2004), Schilick C., Purgathofer
W., (Eds.), pp. 119–140.

[vdB97] VAN DEN BERGEN G.: Efficient collision de-
tection of complex deformable models using
aabb trees. J. Graph. Tools 2, 4 (1997), 1–13.

c© The Eurographics Association 2005.

