
Smart Objects for Attentive Agents

Christopher Peters1; Simon Dobbyn1; Brian Mac Namee2; Carol O’Sullivan1

Image Synthesis Group1
Trinity College Dublin

Dublin 2
Republic of Ireland

Artificial Intelligence Group2
Trinity College Dublin

Dublin 2
Republic of Ireland

ABSTRACT
We present an extended framework for modelling agent-object interactions in virtual environments. Our
framework is based on the concept of Smart Objects and provides agents with pre-programmed interaction
information for the automatic generation of animations. The ability to generate such animations without human
intervention is vital when constructing plausible, real-time agents. Unlike previous approaches, our model also
contains information for directing the attention of agents when interacting with objects. Such information is
useful for driving gaze behaviours, for example when grasping objects. Our framework supports both bottom-up
(attention capture) and top-down, task driven, simulation of behavioural animation on a per-object basis. It also
provides support for the management of the interactions of multiple agents with a single object. We show how
objects are designed and provide a concrete example of using the modelling approach with a gaze controller in an
animation system.

Keywords
Smart objects, attention, gaze, behavioural animation.

1 INTRODUCTION
The animation of autonomous agents is a challenging
task. Agents must make high-level decisions for
themselves and convert them into low-level
animations, while maintaining plausibility in both
planning and motion with respect to the viewer.

Throughout a simulation, many of the animations that
an agent conducts will be based on interactions with
the outside world. In allowing the agent to conduct
interactions with objects in the world, a number of
general approaches may be taken. One option is to
provide the agent with low level rules and a learning
model, and allow the agent to learn how to use
objects. Unfortunately, this approach is not suitable
where ready-made worlds with competent actors are
required. Also, endowing individual agents with
different mental models for every object in a large

world would not be efficient in terms of storage.

The other option is a system where there is a shared
concept of how objects work. All agents in the system
can have access to the same knowledge about how an
object can be manipulated. Although this might at
first seem to be a less realistic approach than the
former, this may not be the case.

Within the fields of psychology and Human
Computer Interaction (HCI) the concept of
affordance [Gib77] suggests that the design of real
world devices inform users in how to operate the
device. The de-facto example of this is that the shape
of a door handle (which matches the shape of a
human hand) suggests to a human that the handle
should be grasped and turned. However, the most
compelling advantage to this approach is that it
decreases the complexity of the task of performing
realistic virtual human and object interactions
enormously.

The most successful implementation of this latter
approach is that of the smart object from
accomplished work by Kallman and Thalmann
[Kal98]. In this approach, objects themselves contain
information and hints about how they should be
interacted with by agents. Typically this information
describes factors such as preconditions which must be

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

WSCG SHORT PAPERS proceedings
WSCG’2003, February 3-7, 2003, Plzen, Czech Republic.
Copyright UNION Agency – Science Press

met before objects can be used, how parts of an
object should be grasped and how a character should
be animated while using an object.

This paper will present two contributions to the smart
object model. The first of these is to allow smart
objects control the gaze behaviours of agents whilst
they are using an object. Attention is an important
aspect of agent animations, since it conveys a sense
of presence and plausibility to viewers of the final
animation. The per-object attention information is
pre-processed during a modelling phase, and then
used by a gaze manager to generate a number of gaze
motions in a high-level manner when an agent
decides to look at an object.

Our second contribution is to place objects at the
centre of situation specific interactions between
characters, allowing the objects inform characters on
how they should interact whilst simultaneously using
the object. As an example of this we will present a
bar object which allows characters perform
interactions based on the use of this object.

Section 2 of this paper will describe our smart object
modelling architecture and how it is used to direct the
low-level animation of agents. Section 3 reviews the
gaze generation system and how it uses attention
information defined during the modelling of an
object. Section 4 looks at how smart objects are
constructed and defined by users, using a bespoke 3D
Studio Max plug-in. Section 5 contains our
conclusions and suggestions for future work.

2 OBJECT MODELLING
The primary impetus for this work is research
conducted by Kallman and Thalmann [Kal98,
Kal99a, Kal99b] on agent-object interactions using
smart objects. Smart objects extend the idea of object
specific reasoning, whereby objects contain more
information than just intrinsic object properties [see
Lev96]. A smart object is an object that is modelled
with its interaction features. Interaction features are
defined as all parts, movements and descriptions of
an object that have some important role when
interacting with an agent.

Smart objects provide the needed parameters for
motion generation. Features are identified in such a
way as to provide important information to the
motion generator. As well as defining intrinsic object
properties such as position, mass and appearance,
smart objects consist of extra properties:

Interaction information: positions and gestures. For
example, hand interaction information such as hand
shape.

Object behaviours: consisting of commands
(connecting an action with an object part), variables
for object states and consequent behaviours.

Behaviour-dependent object variables: if a door is
closed, the agent cannot walk through and will need
to open it.

Agent behaviours: behaviours that are expected from
different interactions. When a door opens, have the
agent walk to a predefined position so that it passes
through the door.

Smart object applications provide a number of
advantages over more commonplace approaches: they
decentralise animation control, separate high level
planning from low level object reasoning and allow
the same object to be used in multiple applications.
They also allow behaviours to be easily connected
with high-level planners, and promote Object
Oriented Design since each object encapsulates data.

In this section, we describe a smart object model
which is based on that from [Kal98], but has a
number of compelling differences. The most
important difference is that our smart object model is
constructed in such a way as to promote the objects
as being central to interactions between characters.
 Our smart object model is designed to be used with
the Proactive Persistent Agent (PPA) architecture
[Mac01] to drive the behaviour of virtual humans
within simulations. Agents based on the PPA
architecture are proactive in the sense that they can
take the initiative and follow their own goals,
irrespective of the actions of the player. Persistence
refers to the fact that at all times, all NPCs in a virtual
world are modelled (at least to some extent),
regardless of their location relative to that of the user.
 Although these two properties are considered an
inherent part of the intelligent agent paradigm
[Woo95] they have mostly been ignored in agent
architectures used in simulations, and in particular
computer games. The PPA architecture is designed in
such a way as to promote situational intelligence,
through techniques such as role passing [Mac02a],
and our smart objects are designed to promote similar
ideas.
The following sections will describe the key features
of our smart object model.

2.1 User Slots
The first component involved in an agent’s use of a
smart object is a user slot. Each smart object can
have any number of user slots associated with it.
These can be considered dummy objects indicating
firstly, where an agent should stand when they begin
using the object, and in which direction they should
face. User slots are also labelled to indicate their type

and this implies what kind of interactions can be
performed at that slot. Before any agent can begin to
use a smart object they must first obtain a free user
slot of an appropriate type.
Figure 1 shows an illustration of a smart bar object.
Two user slots are shown: the barman slot and the
general slot. The barman should stand at one side of
the bar facing in the direction of the bar, while the
customer (who uses the general slot) should stand at
the other side of the bar, facing the agent at the
barman slot.
User-slots are a departure from the smart object
model used in [Kal98]. The main advantage of user
slots is that they avoid many of the concurrency
problems which arise through the use of rules alone
(which is the way in which the original smart object
model operates). This is particularly important if we
are to have agent interactions centre around smart
objects. For example, the bar object allows bar
patrons to order a drink from the barman, the barman
pours these drinks and gives them to the patrons, and
the patrons pay for their drinks and drink them. All of
this could lead to serious concurrency problems,
making the user-slot notion particularly appealing.
The biggest disadvantage of user slots is that they can
lead to slightly repetitive behaviours as agents will
always stand in the same position, follow the same
series of steps etc. However, this can be overcome by
providing a range of user slots for each object, and
ensuring that animations are not too repetitive.

2.2 Usage Steps
Each user slot contains a number of usage steps
which describe, in a step by step manner, how an
agent should use an object. There are a number of
key pieces of information at each usage step:
• The information required to animate the agent at

this step.
• The conditions which must be met in order for

the agent to move onto the next step.
• Details of any changes which are to be made to

either the agent’s attributes or the object’s
attributes on completion of this usage step.

• Details of any information which should be
passed to users of this object on completion of
this step.

• Whether or not the agent is free to socially
interact with other agents while at this step.

• Points of interest on the object upon which the
agent should focus while at this usage step.

After the animation information, the most important
aspect of a usage step is the condition which allows
the character at that step to move on to the next usage

step. Conditions can take one of two forms. The first
indicates that the agent must only wait for the
animations required by the current step to be
complete in order to move onto the next step.

The second, and more interesting, form that a
condition may take is that an agent at a particular slot
must wait for an agent at another slot to reach a
particular usage step in order to move onto the next
step. It is in this way that we allow character
interactions to be centred around a smart object.
Figure 1 shows an illustration of the usage steps
involved in using a bar object at both the barman and
general user slots. The arrows show the conditions
involved in moving from one usage step to the next.
Usage steps with arrows going directly from that step
to the next (for example going from step 0 (ASK) to
step 1 (LISTEN) of the barman user slot) only require
that the animations required by the first step have
been performed in order to move on to the next step.
If there is a point along an arrow moving from one
step to the next out of which an arrow leads to the
start of a step of another user slot, then the character
at the current usage step must wait until the character
at the other slot reaches the usage step indicated by
this arrow. For example, if an agent at the general
user slot is at step 1 (LISTEN), then they must wait

Figure 1. An illustration of a smart bar object
indicating the object's user-slots, the usage

steps involved in using the object at these slots,
and the conditions involved in moving between

these steps.

until the agent at the barman slot has reached step 1
(LISTEN), before they can move on to step 2 (ORDER).
Once a usage step is complete, changes can be made
to the attributes of both the users of an object, and the
object itself, and these are listed in each usage step.
Characters’ decisions to use particular objects are
based on internal motivations crossing thresholds
[Mac02a] and these motivations are then adjusted
based on the user attribute changes listed in a
particular usage step. Along with attributes changing,
important pieces of information must often be passed
between characters using the same object. These are
also listed in the usage step.

Characters implemented through the PPA architecture
are capable of performing a number of social
interactions with each other [Mac02b]. These include
joking, chatting, flirting etc. At some usage steps (for
example the WAIT steps for the bar object) characters
are free to engage in these interactions with other
nearby characters. Whether or not such interactions
are allowed is indicated at each step.
Finally, each usage step also includes information
about the important parts of the object upon which
the user should focus their gaze while at this step.
The gaze system will be explained in section 3.

3 GAZE CONTOLLER
Gaze is an important consideration when animating
characters; failure to look in expected directions can
destroy the plausibility of an otherwise passable
animation. A good example of this is grasping, where
prehension by a human is normally preceded and
accompanied by eye gaze towards important
locations [Mac94]. A virtual character that can grasp
objects without ever looking at grasp positions will
tend to look robotic in nature.

More importantly, gaze can be viewed as a
manifestation of attention. One of the key areas where
contemporary agents are somewhat lacking is in
conveying a sense of presence to viewers. In short,
although contemporary agents may look around their
environments, they do not appear to pay attention to
them. Although a full system for attention is not
presented here (attention is only considered on a per-
object basis), we do present a necessary step for the
implementation of such a high-level controller.
A number of researchers have explored the use of
gaze or attention models for behavioural animation.
Chopra and Badler [Cho01] present a framework for
generating visual attention behaviour in a simulated
human agent based on observations from psychology,
human factors and computer vision. A number of
behaviours are described, including eye behaviours
for locomotion, monitoring, reaching, visual search
and free viewing. Gillies [Gil01] presents a high-level
approach where agents are endowed with varying
interests. Objects are rated for their relevance to these
interests and agents are more likely to attend to those
objects that are rated highly with respect to their
interests. A number of parameterised gaze behaviours
are implemented along with monitoring and
searching, to provide behavioural competences.
 In this paper, our main interest with respect to gaze
is how it relates to individual objects. Agents should
look at different parts of objects in a manner that is
dependant on the task at hand. They should look at a
different part of a door object if they want to open it,
than if they want to figure out what room number it
leads into. Attention points on objects are also
necessary when there is no task at hand; the agent
may have its attention grabbed by parts of the door in
a bottom-up manner.

Figure 2. The final position of the character after a number of basic gaze motions. From left to right: stare
motion, look motion, glance motion. Motions differ in joint contributions of eyes, head and spine.

3.1 Attention Related Object Properties
The essential premise behind the gaze controller is
that each object contains a number of pre-processed
attention properties that guide gaze control when the
system is running. Object properties are useful for
controlling gaze behaviours after the agent has
decided to look at a certain object in the scene. Note
that the control of attention in deciding what object to
look at in a scene is outside the scope of this paper,
though such a controller would inevitably operate at a
high level and use the gaze manager and smart
objects to partially control gaze behaviours.

3.1.1 Attention Points
Attention points are the fundamental properties that
can be applied to each object. An attention point
represents an interesting or meaningful position on an
object. Salient areas tend to draw attention in a
bottom-up manner. Each attention point may also
contain a tag defining some meaningful feature on the
surface of the object at that position. Tags are strings
that are interpreted at runtime. For example, a food
package object may contain an attention point that is
tagged with the label ‘SIGN INGREDIENTS’. This
location will then be visited during gazing motions
and can be linked in with the object’s behaviour
scripts. Attention points can also be tagged as
monitor positions, so that the agents can monitor
locations. This is useful in a variety of situations: in
the bar scene for example, it is important for the
agent to monitor the bar table in anticipation of the
drink object arriving. Attention points are added
manually by the user during the modelling phase.

3.1.2 Face Descriptors
Individual faces or groups of faces may be tagged
with descriptors. Descriptors allow a single geometric
object to be split up into a number of conceptually
separate parts. This is useful for components that
span multiple faces, but may be represented by a
single part of a texture. For example, the label of a
bottle object will span multiple faces. These faces can
be assigned a tag ‘SIGN LABEL1’. At runtime, an
attention point is generated for these faces.

3.2 Gaze Manager
The gaze manager provides high-level animation
functions for controlling eye and gaze movements.
Requests are made to the gaze manager for
movements and the gaze manager arbitrates and
initialises the low-level animations as necessary.
Coupled with attention information from the smart
objects, the gaze manager uses a basic set of
fundamental gaze motions to provide appropriate
looking behaviour. The manager itself arranges gazes

using two queues: the first queue is used to store
requests for gaze motions, while the second queue is
ordered with winning requests.

3.2.1 Basic Gaze Functions
The gaze manager provides three general low-level
gaze types: look, glance and stare. These gaze types
differ by the contribution of the orienting joints, the
spine, head and eyes, to the final orienting motion.
Glance: these animations allow the eyes to move to
their maximum extents. The head and spine
contribute in lesser amounts to the final motion, with
the spine providing the smallest contribution.
Look: these animations allow a moderate amount of
movement with the eyes. The head is the main
contributor to this type of motion, followed by the
spine.
Stare: these animations do not allow any eye
movements; the eyes stay in their rest orientation.
Instead, only the head and spine are used in orienting
towards a point of interest.
In cases where orienting is not necessary, there is
simply eye movement and in some cases a small
amount of head movement.
Figure 2 provides illustrations of the different gaze
types. Note that the dwell time of the eye on the
target and the speed of the orienting motion are not
tied to the gaze type and are instead passed as
parameters by the calling controllers.

3.2.2 Gaze Requests
Gaze requests are made to the gaze manager through
interface functions. A gaze request consists of a gaze
type, a start time, a dwell time and a priority level.
Dwell time is the amount of time that the eye should
remain on the target position before continuing with
further requests. It should be noted that there is no
guarantee that gaze requests will run on time. It is
possible that the gaze motion will be delayed or even
cancelled by the manager, especially if it has a low
priority and there are high-level gaze motions
pending.
Once a gaze request has been successfully activated,
a list of attention points is extracted from the object.
These consist of static attention points, as well as
grasp positions and other tagged points defined
during the modelling phase. Only visible attention
points are visited. Back-face culling is used to
determine attention point visibility: if the triangle
associated with an attention point is culled, it is not
visible. Each relevant, visible attention point on the
object is visited in order. Gaze duration is dependent

on the saliency value of the attention point, defined during the modelling phase.

High
prim
one
func
way
tagg
poin
stop
TIM

4
In o
obje
crea
in M
Stud
imp
The
assig
to a
thes

Figure 3. The 3D Studio Max plug-in for creating smart-objects. Bar object is shown with dummy
objects. Green cubes represent User Slots. Green spheres represent Attention Points.
-level behaviours can be constructed from these
itive gaze requests. Search behaviour would be
example. For a bus-stop object, the search

tion could animate the virtual human in such a
 as to search the object for an attention point
ed “SIGN TIMETABLE”. Such an attention
t would mark the centre of all faces on the bus-
 object that have been tagged with “SIGN
ETABLE”.

OBJECT EDITOR
rder to allow world designers to define smart
cts, an object editor plug-in (see figure 3) was
ted in 3D Studio MAX. This plug-in was written
AX Script, which is a scripting language for 3D
io MAX that allows the building of custom

ort/export tools.
 object editor provides an interface that allows the
nment of the interaction attributes (see section 2)

n object in 3D Studio Max and the exporting of
e attributes to an XML file. In addition to this, the

object editor allows these attributes to be saved and
loaded in the .max file along with the object.
The creation of a smart object begins with the
selection (in 3D Studio MAX) of the 3D mesh used
to represent the smart object in the real-time system.
The plug-in then allows a user to create and transform
a user-defined number of user slots for the object
using 3D Studio MAX’s transform tools. Once the
user slots are in place, the plug-in allows all of the
previously discussed attributes to be defined,
facilitating easy creation of smart objects. To reduce
the designer’s workload, the plug-in also allows the
copying and pasting of user slot attributes.
With user slots and usage steps in place, the plug-in
allows the creation and transformation of attention
points, and the tagging of the object’s faces with
descriptor information. The gaze manager uses this
information to control gaze behaviour (see section 3).
Once the smart object has been defined using the
plug-in in 3D Studio MAX it can be exported to an
XML file, which uses a proprietary DTD (Document

Type Definition). This XML file can be loaded into
the real-time system and provides the information on
how virtual humans can interact with and attend to
the object.
For example, in the case of a bar object represented
by a mesh consisting of a bar counter and four bar
taps, the plug-in was used to create four user slots of
type barman and four user slots of type general.
Using 3D Studio MAX’s transform tools, the barman
user slots were positioned on the same side as the bar
taps and orientated so that the barman faces the
counter, while the general user slots were positioned
on the other side of the bar counter and orientated so
that any agents using these slots would face the
barman.

Figure 4. The smart bar object in action. A

customer pays the barman for a drink.
Once the user slots were created for the bar object,
the plug-in was used to define the usage steps for
each user slot. For example, in the case of the general
user slots, the third usage step is for the customer to
order a drink (see right hand side of Figure 1). In the
case of this usage step, the following attributes were
defined using the plug-in:

• The step number: 3
• The name of the keyframe animation:

‘order’
• The agent cannot socially interact with other

agents as he is dealing with the barman
• The agent can proceed to the next usage step

once he has finished ordering his drink
Once each usage step for the general and the barman
user slots were defined, the plug-in was used to copy
and paste these usage steps since each specific type of
user slots have the same usage steps.
Finally, the plug-in was used to create and transform
the bar object’s attention points and to define face
descriptors. In the case of this object, attention points
were placed on the bar counter so that the customer

can anticipate the arrival of his pint, and also placed
on the bar tap labels. The faces containing the label
of the bar tap mesh were tagged with ‘SIGN
LABEL1’ so that the customer can look at the
different type of beers while he is waiting to be
served.

5 CONCLUSIONS AND FUTURE
WORK

We have presented an extended framework based on
the concept of smart objects. Our extension has built
on previous work in a number of ways:
• Attention properties have been added to objects

in order to facilitate automatic gaze control
based on task context and salient features.

• Coordination of multiple agents provides
object-centric agent interactions.

• An easy-to-use plug-in for modelling smart
objects. The choice of 3D Studio Max allows
designers to leverage prior knowledge of the
product for fast smart-object definition.

A screenshot of the ALOHA system showing two
virtual humans using a smart bar object is shown in
figure 4. The use of a smart object allows this
complicated series of agent-agent and agent-object
interactions to be directed by the smart object.
There is still more work to be done in a number of
areas. One omission is the inability to spawn new
consumable objects at runtime. For example, when an
agent uses the bar object to obtain a drink, a new
consumable drink object should be introduced into
the world. Consumable objects should also be smart
objects; however this will require a number of further
extensions to our smart object implementation.
As mentioned, with regard to the attention model,
only information to assist per-object gaze motions is
provided in the smart object description. Future work
in this area will concentrate on an attention model
that uses techniques to do attention processing at
scene-level in order to determine the objects that the
agent looks at. Once an object is the focus of the
agent’s attention, the object properties presented in
this paper will be useful in driving gaze motions. A
scheme for automatically generating attention points
on objects may also prove to be beneficial future
research.

6 REFERENCES
[Cho01] Chopra-Khullar, S., and Badler, N.I. Where

to Look? Automating Attending Behaviours of
Virtual Humans. Autonomous Agents and Multi-
Agent Systems 4 (1/2, pp.9-23, 2001.

[Gib77] Gibson, J.J., The Theory of Affordances, In
R. Shaw & J. Bransford (eds.), Perceiving, Acting
and Knowing. Hillsdale, NJ: Erlbaum,1977.

[Gil01] Gillies, M., Practical Behavioural Animation
Based on Vision and Attention, PhD Thesis,
University of Cambridge Computer Laboratory,
Technical Report TR522, 2001.

[Kal98] Kallmann., M., and Thalmann, D. Modeling
Objects for Interaction Tasks. Proc. EGCAS98,
pp.73-86, 1998.

[Kal99a] Kallmann., M., and Thalmann, D. A.
Behavioural Interface to Simulate Agent-Object
Interactions in Real Time, Proc. CA99, pp.138-
146, 1999.

[Kal99b] Kallmann., M., and Thalmann, D. A. Direct
3D Interaction with Smart Objects, Proc.
VRST99, pp.124-130, 1999.

[Lev96] Levison. L., Connecting Planning and Acting
via Object-Specific Reasoning, PhD Thesis, Dept.
of Computer and Information Science, University
of Pennsylvania, 1996.

[Pra85] Pratt., M. J., and Wilson, P.R., Requirements
for Support of Form Features in a Solid Modeling
System, Report R-85-ASPP-01, CAM-1, 1985.

[Mac94] MacKenzie C.L., and Iberall, T. The
Grasping Hand, Amsterdam, The Netherlands:
Elsevier Science Publishers, 1994.

[Mac01] MacNamee, B., and Cunningham, P.,

Proposal for an Agent Architecture for Proactive
Persistent Non Player Characters, Proc. of the
12th Irish Conference on AI and Cognitive
Science, 2001.

[Mac02a] MacNamee, B., Dobbyn, S., Cunningham,
P. and O’Sullivan, C., Men Behaving
Appropriately - Integrating the Role Passing
Technique into the ALOHA System, In
Proceedings of Animating Expressive Characters
for Social interactions, Symposium of the AISB'02
Convention, Imperial College, London, 2002.

[Mac02b] MacNamee, B. and Cunningham, P., The
µ-SIC System: A Connectionist Driven
Simulation of Socially Interactive Agents,
University of Dublin, Department of Computer
Science, Technical Report TCD-CS-2002-43,
2002.

[Woo95] Wooldridge, M. and Jennings, N. R. ,
“Intelligent Agents: Theory and Practice”. The
Knowledge Engineering Review, 10(2), pp.115-
152, 1995.

	INTRODUCTION
	OBJECT MODELLING
	User Slots
	Usage Steps

	GAZE CONTOLLER
	Attention Related Object Properties
	Attention Points
	Face Descriptors

	Gaze Manager
	Basic Gaze Functions
	Gaze Requests

	OBJECT EDITOR
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

